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Abstract 

Greenhouse growers and farmers in general rely heavily on accurate predictions of plant growth and harvest. 

Improvements in environmental management, increased output, improved supply-and-demand matching, and 

reduced costs may all result from the development of models that can properly simulate growth and yield. 

Recent advances in ML, and especially Deep Learning (DL), may give robust new analytical tools. Researchers 

seek to employ ML and DL methods to estimate production and plant growth variance in two greenhouse 

settings: tomato yield forecasting and Ficus benjamina stem growth. In the prediction formulations, we use a 

novel deep recurrent neural network (RNN) based on the Long Short-Term Memory (LSTM) neuron model. In 

order to simulate the desired growth parameters, the RNN design takes into account both the historical values 

for yield, growth, and stem diameter, as well as the microclimate circumstances. We propose a research that 

uses the mean square error criteria to compare the results of several ML approaches, such as support vector 

regression and random forest regression. Positive findings are given based on information collected from two 

greenhouses in Belgium and the United Kingdom as part of the EU  

Keywords: Prediction, deep learning, recurrent LSTM neural networks, growth, yield, tomato, ficus, stem 

diameter. 

INTRODUCTION 

Plant development, like many other biosystems, is 

a highly complex and dynamically coupled 

environmental system. Consequently, predicting 

growth and yield is a formidable scientific obstacle. 

There are several ways in which modeling 

strategies diverge (including, scale of interest, level 

of description, integration of environmental stress, 

etc.). It has been suggested that there are two 

primary ways to approach modeling: either via a 

"knowledge-driven" lens or a "data-driven" lens  

(Todorovski and Dzeroski, 2006; Atanasova et al., 

2008). With a knowledge-driven strategy, you 

primarily make use of your pre-existing expertise 

in the field. Data-driven modeling, on the other 

hand, may create a model from raw data without 

any prior domain expertise.Examples of data-

driven models (DDM) include traditional 

approaches to machine learning including artificial 

neural networks, support vector machines, and 

generalized linear models (Pouteau et al., 2012). 

Those techniques have several positive traits, such 

as being able to approximate nonlinear functions, 

being highly predictive, and being flexible enough 

to respond to inputs from a multivariate system 

with relative ease  
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(Buhmann, 2003). Machine learning (ML), linear 

polarizations, wavelet-based filtering, vegetation 

indices (NDVI), and regression analysis are among 

the most used methods for assessing agricultural 

data (Singh et al., 2016; Liakos et al., 2018). Yet, 

aside these methods, deep learning (DL) is a 

relatively new approach that has been gaining 

popularity (Goodfellow et al., 2016). When it 

comes to computing, DL is quite similar to ANN 

and both are part of the machine learning 

discipline. On the other hand, DL is all about 

"deeper" neural networks that provide a 

hierarchical data representation through a number 

of operations. Because of this, we may expand our 

capacity for learning, leading to enhanced 

efficiency and accuracy. Feature learning, or the 

automated extraction of features from raw data, is a 

major benefit of DL. Features at higher levels of 

the hierarchy are produced by the composition of 

features at lower levels of the hierarchy 

(Goodfellow et al., 2016). Due to the progressively 

complicated nature of the associated models, DL 

excels at solving issues of increasing complexity 

(Pan and Yang, 2010). If sufficiently big data-sets 

are available, the sophisticated models used in DL 

may improve classification accuracy and decrease 

error in regression issues. 

Multiple Linear Regression, Artificial Neural 

Networks, Support Vector Regression, K-Nearest 

Neighbor ML Techniques, and other methods were 

compared for their ability to forecast agricultural 

yields in 10 different datasets by Gonzalez-Sanchez 

et al. (2019). Accuracy measures used to verify the 

models included the Root Mean Square Error 

(RMS), Root Relative Square Error (RRSE), 

Normalized Mean Absolute Error (MAE), and 

Correlation Factor (R). The results indicated that 

among all of the generated crop yield models, M5-

Prime had the lowest error rate. In that research, the 

methods were rated from best to worst based on 

RMSE, RRSE, R, and MAE, with M5-Prime, kNN, 

SVR, ANN, and MLR coming out on top. In a 

separate investigation, (Nair and Yang-Won, 2016) 

estimated corn yield in the state of Iowa using 

SVM, Random Forest (RF), Extremely 

Randomized Trees (ERT), and Deep Learning (DL) 

as four ML methods. To avoid the overfitting issue, 

DL offered more consistent outcomes, as shown by 

validation statistical comparisons. 

Plants' stem diameter is one of the most significant 

metrics used to characterize their development 

throughout the vegetative phase. In addition, stem 

diameter variation has been employed in a variety 

of species to develop proxies for plant water status, 

which is then used in optimization algorithms for 

plant-based irrigation scheduling. Plant stem 

diameter variation (SDV) is the day-to-day 

fluctuation in stem size that occurs in all plants. 

This diurnal variation is directly correlated with the 

amount of water available to plants and may be 

used as a gauge of how much water the plant is 

receiving. Cultivated plants depend on 

photosynthesis and the transport of carbohydrates 

from the site of synthesis to the sink organs for 

energy throughout the vegetative growth and 

development stages (Yu et al., 2015). Quite a few 

sources cover the basics of stem diameter 

variations (Vandegehuchet et al., 2014). The 

known sensitivity of SDV to water and nutrient 

conditions and its tight relationship to the responses 

of agricultural plants to changes in environmental 

circumstances suggest that SDV may be an 

important factor in the success or failure of crop 

production (Kanai et al., 2008). Diameter of the 

stem during the vegetative growth stage is a key 

characteristic in characterizing the development of 

agricultural plants when subjected to abiotic stress. 

As a result, models of plant growth and 

development and environmental factors that affect 

stem diameter (SDV) are necessary. Researchers 

have found that SDV models are useful for 

determining how the environment affects 

agricultural yields, but they say they need to be 

reviewed and improved (Hinckley and Bruckerhoff, 

2011). Predictions of the yearly growth rate of 

balsam fir (Abies balsamea L.) may now be made 

with high precision thanks to SDV daily models 

(Duchesene and Houle, 2011). Predictions of the 

potential growth response to climate may be 

enhanced by include daily data in growth-climate 

models, since this allows for the identification of 

specific climatic occurrences that may be missed 

using a conventional dendroclimatic method 

(Duchesene and Houle, 2011). So far, however, 

environmental variable-based models for 

forecasting SDV and plant development have been 

inadequate. 

Few models have been investigated for the 

complex and dynamic system that is tomato 

cultivation in a greenhouse. TOMGRO and 

TOMSIM (Jones et al., 1999) and (Heuvelink, 

1996) are two of the most widely used dynamic 

growth models in the literature. Those models 



depict biomass partitioning, crop growth, and yield 

as a function of a number of climatic and 

physiological factors, all of which are reliant on 

physiological processes. Growers have been slow 

to adopt these technologies because of their 

complexity, lack of generalizability, and the 

challenges of predicting values for starting 

parameters and validating in different 

circumstances. 

Tomato production in terms of fruit weight was 

established as the Tompousse model by (Abreu et 

al., 2000). The model was created by investigating 

the correlation between climate control variables in 

southern French greenhouses. This model relied on 

the assumption that there was a linear connection 

between the pace at which flowers bloomed and the 

size of the resulting fruit. Testing the concept in 

Portugal's unheated plastic greenhouses yielded 

disappointing results. Adams (Adams, 2002) 

suggested a different approach for estimating 

tomato yields using a graphical simulation tool. 

The primary motivation behind the model was to 

capture variations in greenhouse tomato output on a 

weekly basis, specifically with regards to fruit size 

and harvest frequency. The development of the leaf 

truss and the number of flowers produced were 

estimated using hourly climatic data. Solar 

radiation and air temperature went through cycles, 

which in turn influenced yield swings throughout 

the year. Many resources exist to aid farmers in 

decision-making, as stated by (Qaddoum et al., 

2013). These have the potential to estimate yield 

rates, give guidance on climate management 

measures, and coordinate harvesting with consumer 

demand. 

In this research, we present a deep learning model 

that can accurately predict either ficus stem 

diameter or tomato yield given environmental 

(CO2, humidity, radiation, outside temperature, 

interior temperature), as well as actual yield and 

stem diameter fluctuation observations. The 

remaining sections of this work are laid out as 

follows. Brief descriptions of the proposed 

methodology and the used datasets are provided in 

Section 2. Results are presented in Section 3, and 

discussion of the findings and recommendations for 

further research are provided in Section 4. 

MATERIALS AND METHODS 

Conventional Machine Learning 

Machine learning (ML) methods have the potential 

to solve complex non-linear issues using data from 

a variety of sources, which is a major benefit. 

When applied to real-world circumstances, ML 

allows for more informed decision making and 

action with little to no human participation. It 

offers a robust and adaptable framework for 

making decisions based on data, which has many 

potential uses outside of agriculture. Recent years 

have seen the use of several ML algorithms to 

accurately estimate plant growth, yield, and output 

across a variety of crops. Artificial Neural 

Networks, Support Vector Regression, M5-prime 

Regression Trees, Random Forests, and K-Nearest 

Neighbors are some of the most effective methods 

(Chlingaryan et al., 2018). In this article, we 

employ SVR and RF models as our baseline for 

estimating future crop yields and plant sizes. 

Support vector regression (SVR) 

After Vapnik's Generalized Portrait method, 

support vector regression (SVR) was created as a 

nonlinear version of the approach (Cortes and 

Vapnik, 1995). Through the use of a kernel 

function and a hyperplane, it projects the input data 

into a higher dimensional space, where it may be 

used to divide the data into several categories. The 

regularization parameter c regulates the balance 

between margin and errors. Using radial-basis-

function (rbf) kernels, SVR (system for visually 

recognizing faces) 𝐾(𝑥𝑖,x𝑗)=exp(−𝑦‖𝑥𝑖−𝑥𝑗‖2). Here 

y is a constant used in the radial basis function. 

Random forest (RF) 

Originally developed by Ho in, RF is a kind of 

ensemble learning method (Ho, 1998). RF employs 

decision trees as the ensemble's root learner. The 

basic premise of ensemble learning is that it takes 

more than one predictor to reliably estimate a target 

value from a set of test data. The reason for this is 

because a single predictor cannot separate noise 

from patterns in sample data. RF builds many 

separate regression trees, selecting a bootstrap 

sample of the training data at each tree node. As a 

result, data is continuously added to the regression 

tree until it has expanded to its maximum size. 

Instead, the sum of all the predicted values of the 

regression trees is used to form the final prediction 

value (Breiman 2001). 

Deep learning (DL) 



By incorporating more "depth" (complexity) into 

the model and processing the input using a number 

of algorithms that provide hierarchical data 

representations through many levels of abstraction, 

Deep Learning goes beyond traditional ML. 

Feature learning, or the automated extraction of 

features from raw data, is one of DL's main 

benefits. Features at higher levels of the hierarchy 

are produced through composition of features at 

lower levels. Due to the more complicated models 

utilized, which also allow for huge parallelization, 

DL is able to tackle difficult problems 

exceptionally effectively and quickly. With 

sufficiently big datasets available, the complicated 

models used in DL may improve classification 

accuracy or decrease error in regression tasks. 

Convolutions, pooling layers, fully connected 

layers, gates, memory cells, activation functions, 

encoding/decoding schemes, and so on are all part 

of DL. These components vary depending on the 

network architecture used (Convolutional Neural 

Networks, Recurrent Neural Networks, 

Unsupervised Networks, etc). (Kamilaris et al., 

2018). 

Long short-term memories (LSTM) 

It was with the intention of modeling long-term 

dependencies and pinpointing the best time lag for 

time series issues that the LSTM model was first 

presented in (Hochreiter and Schmidhuber, 1997). 

A long short-term memory (LSTM) network has 

three layers: input, hidden, and output. The 

memory block is the fundamental unit of the hidden 

layer, consisting of memory cells with self-

connections that store the current state in time and 

a pair of adaptive, multiplicative gating units that 

regulate the flow of information inside the block. 

Cell state is indicated by the degree of activation of 

a linear unit inside the memory cell, which is 

referred to as the Constant Error Carousel (CEC). 

When to open and when to shut, the multiplicative 

gates are taught. The vanishing gradient issue may 

be addressed in LSTM by fixing the network error 

to a fixed value. When learning lengthy time series, 

a forget gate is included into the memory cell to 

stop the gradient from exploding. You may 

summarize LSTM's structure and functioning as 

follows: 

 

where 𝑖𝑡, 𝑖𝑡and𝑦𝑡are denoted as input gate, forget 

gate and output gate at time t respectively, 

and𝑚𝑡and 𝑐𝑡represent the hidden state and cell 

state of the memory cell at time t. 

Microclimatic measurements 

As a first experiment, we used the DL and ML 

models on information about Ficus plants (Ficus 

benjammina) grown on four tables in a 

90m2greenhouse section at the Ornamental Plant 

Research Centre (PCS) in Destelbergen, Belgium. 

It was estimated that there were fifteen pots per 

square meter of plant space, and that each pot had 

three cuttings. The greenhouse's microclimate was 

adjusted by adjusting the openings of the 

greenhouse's windows, the temperature of the air 

heating system, the intensity of the assimilation 

light, and the amount of carbon dioxide (CO2) 

added to the air. Automatic flood irrigation was 

used to water the plants, with the timing and total 

radiation doses being the determining factors. The 

microclimate and irrigation control settings 

mimicked those of professional greenhouses. The 

greenhouse's microclimate was tracked in real time. 

The levels of carbon dioxide (CO2) and 

photosynthetically active radiation (PAR) were 

measured using a Vaisala CARBOCAP GMP343 

carbon dioxide probe and a LI-190 Quantum 

Sensor (both from LI-COR, Lincoln, Nebraska, 

USA). A temperature and relative humidity probe 

(Campbell Scientific CS215, Logan, UT, USA) 

was set up in a vented radiation shield to take 

readings. A linear variable displacement transducer 

(LVDT, Solartron, Bognor Regis, UK) sensor was 

used to track the diameter of the stems of these 

plants in real time. The rate of change in stem 



diameter (mm h1) was estimated by taking the 

difference between the present stem diameter and 

the stem diameter measured an hour earlier for a 

specific time point. 

In the second trial, environmental (CO2, humidity, 

radiation, outside temperature, internal 

temperature), as well as yield, real measurements 

were used to train DL and ML models. In contrast 

to the weekly frequency with which the yield was 

recorded, the environmental data were taken every 

hour. We did data augmentation, interpolating 

weekly data to provide daily data measurements, to 

address these data features. Similarly, we averaged 

the environmental data collected every hour so that 

we could have consistent daily representations. 

Separate datasets were used for training, testing, 

and validating in each trials. Sixty percent of the 

data collected was used to create the training set, 

fifteen percent the validation set, and twenty-five 

percent the test set. 

Prediction evaluation 

These prediction models have been evaluated using 

the Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), and Mean Squared Error 

(MSE). The equations below illustrate the formulas 

of these several metrics used for evaluation: 

 

RESULTS AND DISCUSSION 

In order to forecast plant growth and yield in 

greenhouse settings, we have built and evaluated 

DL (LSTM), SVR, and RFR prediction models for: 

a) ficus growth prediction using the SDV indicator, 

and b) tomato yield prediction. The parameters of 

each model were determined using the popular grid 

search technique. For the SVR model development, 

the gamma and C parameters were critical. When 

developing the RF model, it was crucial to take into 

account both the total number of trees and the 

maximum depth of the tree. For the DL LSTM 

model, it was crucial to get the details right about 

the number and size of hidden layers. 

There were three stages to the method that was 

ultimately used: 

Data cleansing and preparation is a must. 

• Separating data into a training set, a validation 

set, and a test set. 

Models using DL/LSTM, SVR, and RF may be 

created and used to make a prediction one step into 

the future. 

As can be seen from the outcomes of both tests, the 

DL/LSTM model performs better than the SVR and 

RF models. Table 1 displays the accuracy (in MSE, 

RMSE, and MAE) achieved in both trials by 

applying each of the three (trained) models to the 

test datasets. 

Table 1. Performance of the DL/LSTM model 

compared to those of SVR and RF models for plant 

yield and growth prediction. 

 

In Figure 1 we see how well various prediction 

models do (RF, SVR and LSTM). It's evident that 

the LSTM model beat the RF and SVR 

implementations in predicting Ficus growth (SVD). 

Figure 2 demonstrates how the LSTM model 

generalized better than the RF and SVR models by 

following the trend of the actual yield value and 

storing a better representation of the temporal 

nature of the provided data. 

CONCLUSIONS 

In this research, we describe a deep learning (DL) 

strategy that makes use of LSTM to accurately 



forecast the development of a Ficus tree 

(represented by the standard deviation vector; 

SDV) and the production of tomatoes. In terms of 

mean squared error (MSE), root mean squared error 

(RMSE), and mean absolute error (MAE), 

experimental findings showed that the DL approach 

(using an LSTM model) outperformed other 

conventional ML techniques like SVR and RF. As 

a result, our project's primary objective is to create 

DL methods for forecasting plant growth and 

production in greenhouse settings. Research into 

the long-term effects of a) increasing the quantity 

of data used to train the proposed DL methods and 

b) expanding the DL method to perform multi-step 

(at a weekly, or a multiple of weeks basis) 

prediction of growth and yield in a wide range of 

greenhouses in the UK and Europe is warranted. 
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